Using Open Data for Local Policy Making

Lessons from DSSG

Jonathan Auerbach New York City Council

Data Science for Social Good

Goal of Open Data is to "empower Chicago's residents by providing them with information necessary to participate in government in a meaningful manner" and "assist in identifying possible solutions to pressing governmental problems."

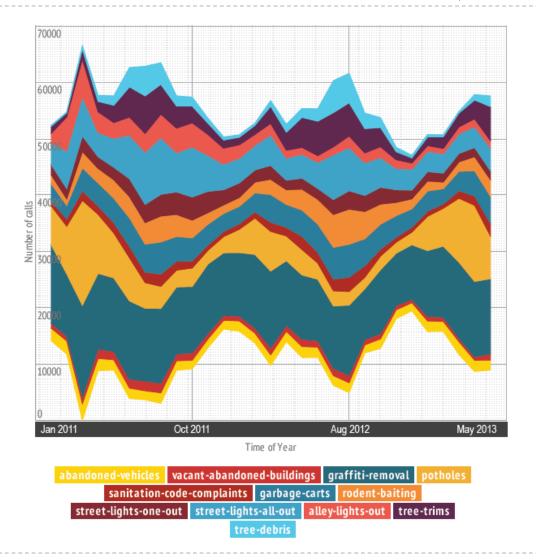
-Mayor Emanuel

Chicago's Data Portal

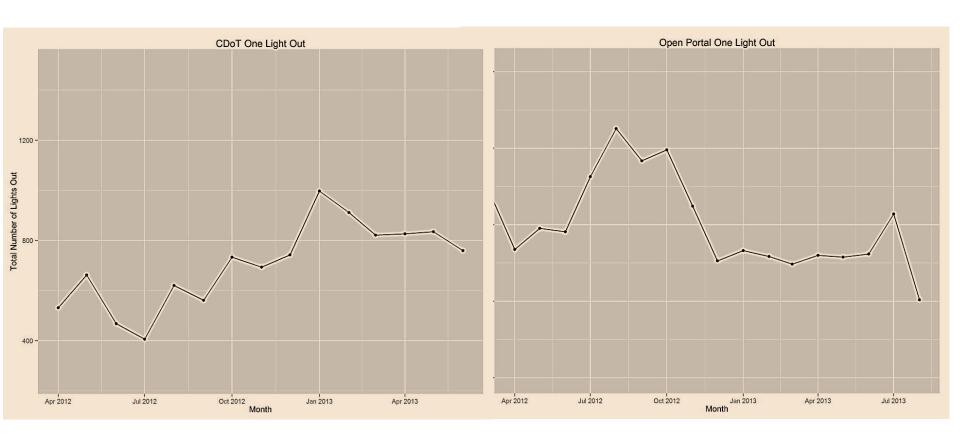
Contains 200+ open datasets

- Open data is transactional data
 - Transactional Data != Survey Data
 - Open Portal Data is generally collected for accounting purposes
 - We looked at Customer Service Requests (including 311 Calls) and Crime Data

Customer Service Requests (CSRs)



Notable Limitations



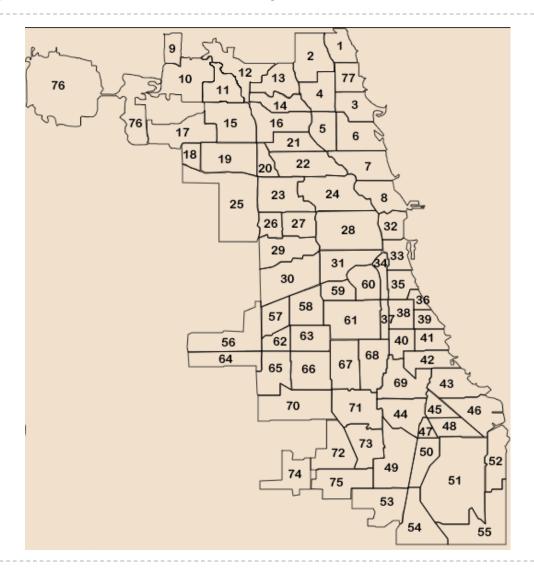
So Why Use Open Data in Policy?

- Policy making has been using data for a long time
 - Pension Financing (1920s)
 - Capital Financing (1950s)
- But policy decisions are rarely data driven
 - Parties make data-driven arguments but the advantage in decision making goes to those that have a privileged access to data
- We believed that (despite its limitations) open data can facilitate objective, data-driven decisions

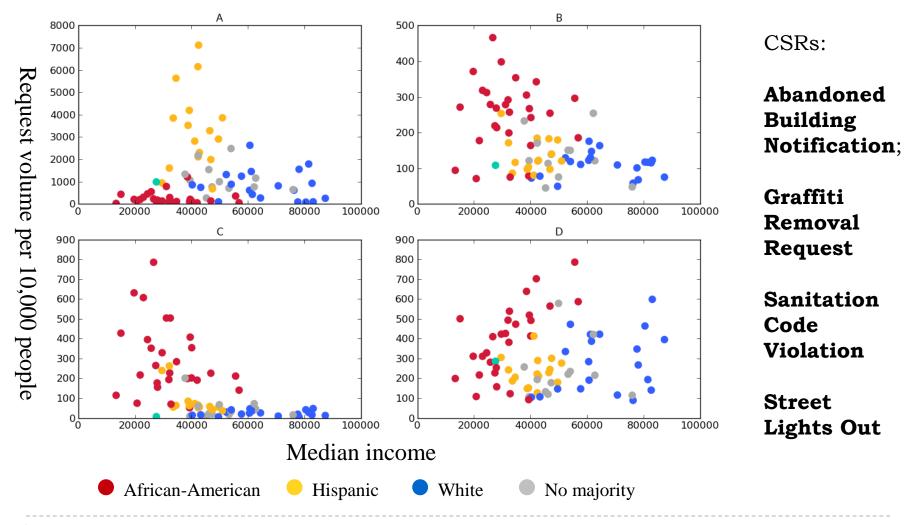
Empowering the Public

- Open data is used most effectively when policy makers use it to include the public more intelligently in decision making.
- Government should draw on the talents of the huge, "impartial" data using community.
 - Build visualizations/tools
- But first the quality of the data has to be evaluated and documented.
 - ▶ Lots of EDA

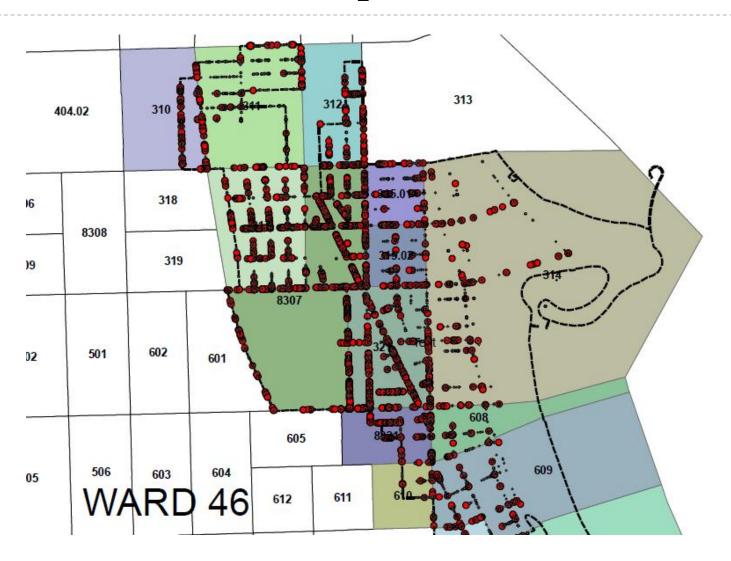
Chicago Community Areas



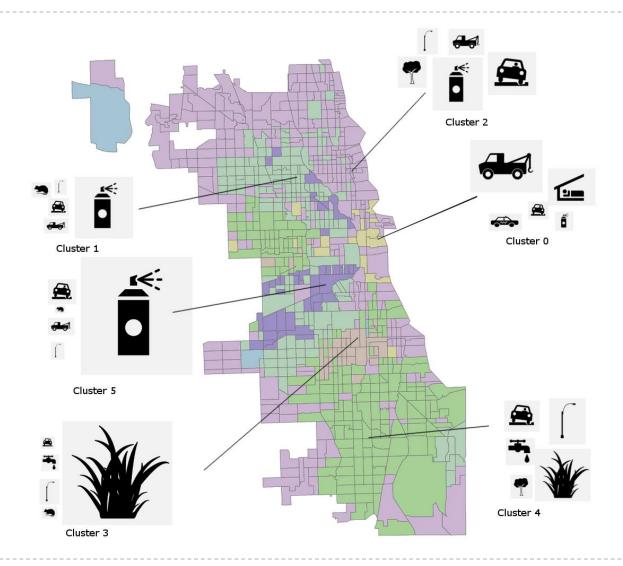
Quiz: Match the Service Request to its Graph



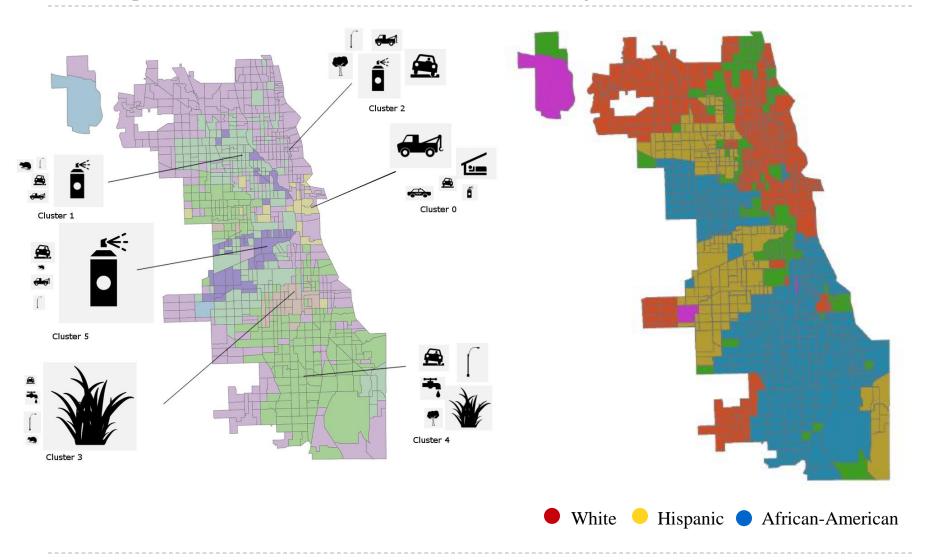
Graffiti Removal Requests



Census Tract Clusters



Neighborhoods Defined by Services



Select Coefficients of Poisson Generalized Linear Models

Service Request	Graffiti Removal	Potholes Filing
Intercept	2.029	1.754
Service Requests (Lag 1)	0.008	0.009
Service Requests (Lag 2)	0.006	0.009
Population (1000s)	0.074	0.158
Fraction 65+	-3.356	1.445
Fraction Black	-1.232	0.345
Fraction Hispanic	0.743	0.349
Fraction below Poverty Line	-0.152	-0.368
Unemp Rate (%)	-0.002	0.005
Median Income (\$1000s)	-0.001	0.005

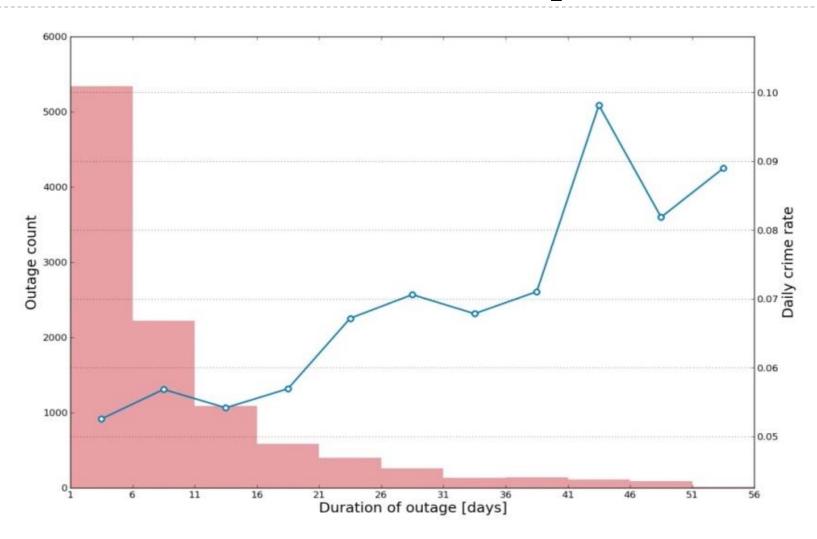
*** all coefficients significant at 1% level

Do Light Outages Cause Crime?

- Looked at 27 models on the Community Area
 Level
 - 3 different types of "lights out"
 - 9 different crime types
 - Included various ACS 5-Year demographic and economic characteristics

Table 2. Crimes by Type				
All Crimes (No Deceptive Practice)	179514			
Narcotics	36978			
Theft	39308			
Battery	33600			
Criminal Damage	22452			
Motor Vehicle Theft	19158			
Robbery	13845			
Assault	12324			
Burglary	1420			
Homicide	429			
Deceptive Practice	3865			

Crime and Time until Completion



Lights Out and Robberies

Table 6. Within Area % Difference in Alley Robbery Rates by Community Area

Community Area		% Difference		
Number	Name	% Diff	P Value	Sign ificance
7	Lincoln Park	341.9	0.001	**
22	Logan Square	32.5	0.360	
23	Humboldt Park	52.1	0.094	
24	West Town	25.7	0.477	
25	Austin	33.6	0.108	
26	West Garfield Park	20.8	0.414	
27	East Garfield Park	-42.7	0.241	
29	North Lawndale	-6.6	0.816	
30	South Lawndale	49.0	0.210	
42	Woodlawn	-51.0	0.178	
43	South Shore	1.2	0.955	
44	Chatham	53.7	0.022	*
46	South Chicago	4.3	0.879	
49	Roselan d	-24.3	0.275	
53	West Pullman	135.3	0.008	**
66	Chicago Lawn	-35.3	0.129	
67	West Englewood	-31.4	0.126	
68	Englewood	127.7	0.001	**
69	Greater Grand Crossing	-20.3	0.425	
71	Aubum Gresham	52.1	0.030	*
73	Washington Heights	1.2	0.972	

